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The next step in the understanding of the genome organization, after the determination
of complete sequences, involves proteomics. The proteome includes the whole set of
protein-protein interactions, and two recent independent studies have shown that its
topology displays a number of surprising features shared by other complex networks,
both natural and artificial. In order to understand the origins of this topology and
its evolutionary implications, we present a simple model of proteome evolution that
is able to reproduce many of the observed statistical regularities reported from the
analysis of the yeast proteome. Our results suggest that the observed patterns can be
explained by a process of gene duplication and diversification that would evolve proteome
networks under a selection pressure, favoring robustness against failure of its individual
components.
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1. Introduction

The genome is one of the most fascinating examples of the importance of emergence

from network interactions. The recent sequencing of the human genome [23,38]

revealed some unexpected features and confirmed that “the sequence is only the

first level of understanding of the genome” [38]. The next fundamental step beyond

the determination of the genome sequence involves the study of the properties of

the proteins the genes encode, as well as their interactions [12]. Protein interactions

play a key role at many different levels and its failure can lead to cell malfunction

or even apoptosis, in some cases triggering neoplastic transformation. This is the

case, for example, of the feedback loop between two well-known proteins, MDM2

and p53: in some types of cancers, amplification of the first (an oncoprotein) leads

to the inactivation of p53, a tumor-suppressor gene that is central in the control of

the cell cycle and death [47].

Understanding the specific details of protein-protein interactions is an essen-

tial part of our understanding of the proteome, but a complementary approach is

provided by the observation that network-like effects play also a key role. Using
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again p53 as an example, this gene is actually involved in a large number of inter-

action pathways dealing with cell signaling, the maintenance of genetic stability, or

the induction of cellular differentiation [39]. The failure in p53, as when a highly

connected node in the Internet breaks [1], has severe consequences.

Additional insight is provided by the observation that in many cases the total

suppression of a given gene in a given organism leads to a small phenotypic effect

or even no effect at all [32,41]. These observations support the idea that, although

some genes might play a key role and their suppression is lethal, many others can be

replaced in their function by some redundancy implicit in the network of interacting

proteins.

Protein-protein interaction maps have been studied, at different levels, in a

variety of organisms including viruses [5,13,25], prokaryotes [31], yeast [18], and

multicellular organisms such as C. elegans [44]. Most previous studies have used the

so-called two-hybrid assay [14] based on the properties of site-specific transcriptional

activators. Although differences exist between different two-hybrid projects [16] the

statistical patterns used in our study are robust.

Recent studies have revealed a surprising result: the protein-protein interaction

networks in the yeast Saccharomyces cerevisiae share some universal features with

other complex networks [35]. These studies actually offer the first global view of

the proteome map. These are very heterogeneous networks: The probability P (k)

that a given protein interacts with other k proteins is given by a power law, i.e.

P (k) ∼ k−γ with γ ≈ 2.5 (see figure 1), with a sharp cut-off for large k. This

distribution is thus very different from the Poissonian shape expected from a simple

(Erdos-Renyi) random graph [6,22]. Additionally, these maps also display the so-

called small-world (SW) effect: they are highly clustered (i.e. each node has a well-

defined neighborhood of “close” nodes) but the minimum distance between any two

randomly chosen nodes in the graph is short, a characteristic feature of random

graphs [45].

As shown in previous studies [1] this type of networks is extremely robust against

random node removal but also very fragile when removal is performed selectively

on the most connected nodes. SW networks appear to be present in a wide range

of systems, including artificial ones [4,2,10,29] and also in neural networks [45,34],

metabolic pathways [8,20,43] (see also [28]), even in human language organization

[9]. The implications of these topologies are enormous also for our understanding

of epidemics [30,24].

The experimental observations on the proteome map can be summarized as

follows:

(1) The proteome map is a sparse graph, with a small average number of links

per protein. In [42] an average connectivity K̄ ∼ 1.9 − 2.3 was reported

for the proteome map of S. cerevisiae. This observation is also consistent

with the study of the global organization of the E. coli gene network from

available information on transcriptional regulation [36].
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Fig. 1. Degree distributions for two different data sets from the Yeast proteome: A: Ref. [42];
B: Ref. [19]. Both distributions display scaling behavior in their degree distribution P (k), i.e.
P (k) ∼ k−γ , a sharp cut-off for large k and very small average connectivities: K̄A = 1.83 (total
graph) and K̄B = 2.3 (giant component), respectively. The slopes are γA ≈ 2.5 ± 0.15 and
γB ≈ 2.4 ± 0.21.

(2) It exhibits a SW pattern, different from the properties displayed by purely

random (Poissonian) graphs.

(3) The degree distribution of links follows a power-law with a well-defined

cut-off. To be more precise, Jeong et al. [19] reported a functional form for

the degree distribution of S. cerevisiae

P (k) ≃ (k0 + k)−γe−k/kc . (1.1)

A best fit of the real data to this form yields a degree exponent γ ≈ 2.5

and a cut-off kc ≈ 20. This could have adaptive significance as a source of

robustness against mutations.

In this paper we present a model of proteome evolution aimed at capturing the

main properties exhibited by protein networks. The basic ingredients of the model

are gene duplication plus re-wiring of the protein interactions, two elements known

to be the essential driving forces in genome evolution [27]. The model does not

include functionality or dynamics of the proteins involved, but it is a topologically-

based approximation to the overall features of the proteome graph and intends to

capture some of the generic features of proteome evolution.

During the completion of this work we became aware of a paper by Vázquez et

al., Ref. [37], in which a related model of proteome evolution, showing multifractal

connectivity properties, is described and analyzed.

2. Proteome growth model

Here we restrict our rules to single-gene duplications, which occur in most cases due

to unequal crossover [27], plus re-wiring. Multiple duplications should be considered

in future extensions of these models: molecular evidence shows that even whole-

genome duplications have actually occurred in S. cerevisiae [46] (see also Ref. [40]).
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(b)

(a)

δ

α
(c)

Fig. 2. Growing network by duplication of nodes. First (a) duplication occurs after randomly
selecting a node (arrow). The links from the newly created node (white) now can experience
deletion (b) and new links can be created (c); these events occur with probabilities δ and α,
respectively.

Re-wiring has also been used in dynamical models of the evolution of robustness in

complex organisms [7].

It is worth mentioning that the study of metabolic networks provides some

support to the rule of preferential attachment [4] as a candidate mechanism to ex-

plain the origins of the scale-free topology. Scale-free graphs are easily obtained in

a growing network provided that the links to new nodes are made preferentially

from nodes that already have many links. A direct consequence is that vertices

with many connections are those that have been incorporated early. This seems

to be plausible in the early history of metabolic nets, and this view is supported

by some available evidence [43]. A similar argument can be made with proteome

maps, since there are strong connections between the evolution of metabolic path-

ways and genome evolution, and other scenarios have also been proposed, including

optimization [11]. Here we do not consider preferential attachment rules, although

future studies should explore the possible contributions of different mechanisms to

the evolution of network biocomplexity. In this context, new integrated analyses of

cellular pathways using microarrays and quantitative proteomics [17] will help to

obtain a more detailed picture of how these networks are organized.

The proteome graph at any given step t (i.e. after t duplications) will be indi-

cated as Ωp(t). The rules of the model, summarized in figure 2, are implemented as

follows. Each time step: (a) one node in the graph is randomly chosen and dupli-

cated; (b) the links emerging from the new generated node are removed with prob-

ability δ; (c) finally, new links (not previously present) can be created between the

new node and all the rest of the nodes with probability α. Step (a) implements gene

duplication, in which both the original and the replicated proteins retain the same

structural properties and, consequently, the same set of interactions. The rewiring
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steps (b) and (c) implement the possible mutations of the replicated gene, which

translate into the deletion and addition of interactions, with different probabilities.

Since we have two free parameters, we should first constrain their possible values

by using the available empirical data. As a first step, we can estimate the asymptotic

average connectivity exhibited by the model in a mean-field approximation (see also

Ref. [37]). Let us indicate by K̄N the average connectivity of the system when it

is composed by N nodes. It is not difficult to see that the increase in the average

connectivity after one iteration step of the model is proportional to

dK̄N

dN
≃ K̄N+1 − K̄N =

1

N

[

K̄N − 2δK̄N + 2α(N − K̄N)
]

. (2.1)

The first term accounts for the duplication of one node, the second represents the

average elimination of δK̄N links emanating from the new node, and the last term

represents the addition of α(N − K̄N ) new connections pointing to the new node.

Eq. (2.1) is a linear equation which easily solved, yielding

K̄N =
αN

α + δ
+

(

K̄1 −
α

α + δ

)

NΓ, (2.2)

where Γ = 1 − 2α − 2δ and K̄1 is the initial average connectivity of the system.

This solution leads to an increasing connectivity through time. In order to have a

finite K̄ in the limit of large N , we must impose the condition α = β/N , where

β is a constant. That is, the rate of addition of new links (the establishment of

new viable interactions between proteins) is inversely proportional to the network

size, and thus much smaller than the deletion rate δ, in agreement with the rates

observed in [42]. In this case, for large N , we get

dK̄N

dN
=

1

N
(1 − 2δ)K̄N +

2β

N
. (2.3)

The solution of this equation is

K̄N =
2β

2δ − 1
+

(

K̄1 −
2β

2δ − 1

)

N1−2δ. (2.4)

For δ > 1/2 a finite connectivity is reached,

K̄ ≡ K̄∞ =
2β

2δ − 1
. (2.5)

The previous expression imposes the boundary condition δ > 1/2, necessary in

order to obtain a well-defined limiting average connectivity. Eq. (2.5), together

with the experimental estimates of K̄ ∼ 1.9− 2.3, allows to set a first restriction to

the parameters β and δ. Imposing K̄ = 2, we are led to the relation

β = 2δ − 1. (2.6)

Moreover, estimations of addition and deletion rates α and δ from yeast [42] give

a ratio α/δ ≤ 10−3. For proteomes of size N ∼ 103, as in the case of the yeast,
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Fig. 3. A) An example of a small proteome interaction map (giant component, Ω∞) generated
by the model with N = 103, δ = 0.58, and β = 0.16. B) Real yeast proteome map obtained from
the MIPS database [26]. We can observe the close similitude between the real map and the output
of the model.

this leads to β/δ ≤ 10−3N ∼ 1. Using the safe approximation β/δ ≈ 0.25, together

with the constraint (2.5), we obtain the approximate values

δ = 0.58, β = 0.16. (2.7)

which will be used through the rest of the paper.

Simulations of the model start form a connected ring of N0 = 5 nodes, and

proceed by iterating the rules until the desired network size is achieved.

3. Results

Computer simulations of the proposed model reproduce many of the regularities

observed in the real proteome data. As an example of the output of the model,

in figure 3A we show an example of the giant component Ω∞ (the largest cluster

of connected proteins) of a realization of the model with N = 103 nodes. This

figure clearly resembles the giant component of real yeast networks, as we can see

comparing with figure 3Ba, and we can appreciate the presence of a few highly

connected hubs plus many nodes with a relatively small number of connections.

The size of the giant component for N = 103, averaged of 104 networks, is |Ω∞| =

472 ± 87, in good agreement with Wagner’s data |ΩW
∞
| = 466 for a yeast with

a similar total number of proteins (the high variance in our result is due to the

large fluctuations in the model for such small network size N). On the other hand,

in figure 4 we plot the connectivity P (k) obtained for networks of size N = 103.

In this figure we observe that the resulting connectivity distribution can be fitted

aFigure kindly provided by W. Basalaj (see http://www.cl.cam.uk∼wb204/GD99/#Mewes).

http://www.cl.cam.uk~wb204/GD99/#Mewes
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Fig. 4. Degree distribution P (k) for the model, averaged over 104 networks of size N = 103.
The distribution shows a characteristic power law behavior, with exponent γ = 2.5 ± 0.1 and an
exponential cut-off kc ≃ 28.

to a power-law win an exponential cut-off, of the form given by Eq. (1.1), with

parameters γ = 2.5 ± 0.1 and kc ≃ 28, in good agreement with the measurements

reported in Refs [42] and [19].

An additional observation from Wagner’s study of the yeast proteome is the

presence of SW properties. We have found also similar topological features in our

model, using the considered set of parameters. The proteome graph is defined by

a pair Ωp = (Wp, Ep), where Wp = {pi}, (i = 1, ..., N) is the set of N proteins and

Ep = {{pi, pj}} is the set of edges/connections between proteins. The adjacency

matrix ξij indicates that an interaction exists between proteins pi, pj ∈ Ωp (ξij = 1)

or that the interaction is absent (ξij = 0). Two connected proteins are thus called

adjacent and the degree of a given protein is the number of edges that connect it

with other proteins.

The SW pattern can be detected from the analysis of two basic statistical quan-

tities: the clustering coefficient Cv and the average path length L. Let us consider

the adjacency matrix and indicate by Γi = {pi | ξij = 1} the set of nearest neighbors

of a protein pi ∈ Wp. The clustering coefficient for this protein is defined as the

number of connections between the proteins pj ∈ Γi [45]. Denoting

Li =

N
∑

j=1

ξij

[

∑

k∈Γi

ξjk

]

, (3.1)

we define the clustering coefficient of the i-th protein as

cv(i) =
2Li

ki(ki − 1)
, (3.2)
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Table 1. Comparison between the observed regularities in the

yeast proteome [42], the model predictions with N = 103,
δ = 0.58 and β = 0.16, and a random network with the same
size and average connectivity as the model. The quantities X

represent averages over the whole graph; Xg represent averages
over the giant component.

Yeast proteome Network model Random network

K̄ 1.83 2.2 ± 0.5 2.00 ± 0.06
K̄g 2.3 4.3 ± 0.5 2.41 ± 0.05
γ 2.5 2.5 ± 0.1 —

|Ω∞| 466 472 ± 87 795 ± 22
C

g
v 2.2 × 10−2 1.0 × 10−2 1.5 × 10−3

Lg 7.14 5.1 ± 0.5 9.0 ± 0.4

where ki is the connectivity of the i-th protein. The clustering coefficient is defined

as the average of cv(i) over all the proteins,

Cv =
1

N

N
∑

i=1

cv(i), (3.3)

and it provides a measure of the average fraction of pairs of neighbors of a node

that are also neighbors of each other.

The average path length L is defined as follows: Given two proteins pi, pj ∈ Wp,

let Lmin(i, j) be the minimum path length connecting these two proteins in Ωp.

The average path length L will be:

L =
2

N(N − 1)

N
∑

i<j

Lmin(i, j) (3.4)

Random graphs, where nodes are randomly connected with a given probability p

[6], have a clustering coefficient inversely proportional to the network size, Crand
v ≈

K̄/N , and an average path length proportional to the logarithm of the network

size, Lrand ≈ log N/ log K̄. At the other extreme, regular lattices with only nearest-

neighbor connections among units are typically clustered and exhibit long average

paths. Graphs with SW structure are characterized by a high clustering with Cv ≫

Crand
v , while possessing an average path comparable with a random graph with the

same connectivity and number of nodes.

In Table 1 we report the values of K̄, γ, |Ω∞|, Cv, and L for our model, com-

pared with the values reported for the yeast S. cerevisiae [19,42], and the values

corresponding to a random graph with size and connectivity comparable with both

the model and the real data. Except the average connectivity of the giant com-

ponent, which is slightly larger for the model, all the magnitudes for the model

compare quite well with the values measured for the yeast. On the other hand, the

values obtained for a random graph support the conjecture of the SW properties

of the protein network put forward in Ref. [42].
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4. Discussion

The analysis of complex biological networks in terms of random graphs is not new.

Early work suggested that the understanding of some general principles of genome

organization might be the result of emergent properties within random networks

of interacting units [21,22]. An important difference emerges, however, from the

new results about highly heterogeneous networks: the topological organization of

metabolic and protein graphs is very different from the one expected under totally

random wiring and as a result of their heterogeneity, new qualitative phenomena

emerge (such as the robustness against mutation). This supports the view that cel-

lular functions are carried out by networks made up by many species of interacting

molecules and that networks of interactions might be at least as important as the

units themselves [15,33].

Our study has shown that the macroscopic features exhibited by the proteome

are also present in our simple model. This is surprising, since it is obvious that

different proteins and protein interactions play different roles and operate under

very different time scales and our model lacks such specific properties, dynamics

or explicit functionality. Using estimated rates of addition and deletion of protein

interactions as well as the average connectivity of the yeast proteome, we accurately

reproduce the available statistical regularities exhibited by the real proteome. In

this context, although data from yeast might involve several sources of bias, it has

been shown that the same type of distribution is observable in other organisms,

such as the protein interaction map of the human gastric pathogen Helicobacter

pylori or in the p53 network (Jeong and Barabási, personal communication).

These results suggest that the global organization of protein interaction maps

can be explained by means of a simple process of gene duplication plus diversifica-

tion. These are indeed the mechanisms known to be operating in genome evolution

(although the magnitude of the duplication event can be different). One impor-

tant point to be explored by further extensions of this model is the origin of the

specific parameters used. The use of evolutionary algorithms and optimization pro-

cedures might provide a consistent explanation of the particular values observed

and their relevance in terms of functionality. A different source of validation of

our model might be the study of proteome maps resulting from the evolution of

resident genomes [3]: the genomes of endosymbionts and cellular organelles display

an evolutionary degradation that somehow describe an inverse rule of proteome re-

duction. Reductive evolution can be almost extreme, and available data of resident

proteomes might help to understand how proteome maps get simplified under the

environmental conditions defined by the host genome. If highly connected nodes

play a relevant role here, perhaps resident genomes shrink by loosing weakly con-

nected nodes first.

Most of the classic literature within this area deal with the phylogenetic conse-

quences of duplication and do not consider the underlying dynamics of interactions

between genes. We can see, however, that the final topology has nontrivial con-
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sequences: this type of scale-free network will display an extraordinary robustness

against random removal of nodes [1] and thus it can have a selective role. But an

open question arises: is the scale-free organization observed in real proteomes a

byproduct of the pattern of duplication plus rewiring (perhaps under a low-cost

constraint in wiring) and thus we have “robustness for free”? The alternative is

of course a fine-tuning of the process in which selection for robustness has been

obtained by accepting or rejecting single changes. Further model approximations

and molecular data might provide answers to these fundamental questions.
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[33] R. V. Solé, I. Salazar-Ciudad, and S. A. Newman. Gene network dynamics and the
evolution of development. Trends Ecol. Evol., 15:479–480, 2000.

[34] K. E. Stephan, C-C. Hilgetag, G. A. P. C. Burns, M. A. O’Neill, M. P. Young and R.
Kötter. Computational analysis of functional connectivity between areas of primate
cerebral cortex. Phil. Trans. Roy. Soc. Lond. B 355: 111-126, 2000.

[35] S. H. Strogatz. Exploring complex networks. Nature, 410:268–276, 2001.
[36] D. Thieffry, A. M. Huerta, E. Pérez-Rueda, and J. Collado-Vives. From specific gene

regulation to genomic networks: a global analysis of transcriptional regulation in
Escherichia coli. BioEssays, 20:433–440, 1998.

[37] A. Vázquez, A. Flammini, A. Maritan, and A. Vespignani. Modelling of protein



February 1, 2008 21:37 WSPC/Guidelines proteoACS
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